摘要:
在图像识别当中,一般步骤是先读取图片,然后把图片数据转化成tensor格式,再输送到网络中去。本文将介绍如何把图片转换成tensor。
一、数据转换
把图片转成成torch的tensor数据,一般采用函数:torchvision.transforms。通过一个例子说明,先用opencv读取一张图片,然后在转换;注意一点是:opencv储存图片的格式和torch的储存方式不一样,opencv储存图片格式是(H,W,C),而torch储存的格式是(C,H,W)。
import torchvision.transforms as transforms import cv2 as cv img = cv.imread('image/000001.jpg') print(img.shape) # numpy数组格式为(H,W,C) transf = transforms.ToTensor() img_tensor = transf(img) # tensor数据格式是torch(C,H,W) print(img_tensor.size())
注意:使用torchvision.transforms时要注意一下,其子函数 ToTensor() 是没有参数输入的,以下用法是会报错的
img_tensor = transforms.ToTensor(img)
必须是先定义和赋值转换函数,再调用并输入参数,正确用法:
img = cv.imread('image/000001.jpg') transf = transforms.ToTensor() img_tensor = transf(img)
再转换过程中正则化
在使用 transforms.ToTensor() 进行图片数据转换过程中会对图像的像素值进行正则化,即一般读取的图片像素值都是8 bit 的二进制,那么它的十进制的范围为 [0, 255],而正则化会对每个像素值除以255,也就是把像素值正则化成 [0.0, 1.0]的范围。通过例子理解一下:
import torchvision.transforms as transforms import cv2 as cv img = cv.imread('image/000001.jpg') transf = transforms.ToTensor() img_tensor = transf(img) print('opencv', img) print('torch', img_tensor)
三、自行修改正则化的范围
使用transforms.Compose函数可以自行修改正则化的范围,下面举个例子正则化成 [-1.0, 1.0]
transf2 = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ] ) img_tensor2 = transf2(img) print(img_tensor2)
计算方式就是:
C=(C-mean)/ std
C为每个通道的所有像素值,彩色图片为三通道图像(BGR),所以mean和std是三个数的数组。
使用transforms.ToTensor()时已经正则化成 [0,0, 0,1]了,那么(0.0 - 0.5)/0.5=-1.0,(1.0 - 0.5)/0.5=1.0,所以正则化成 [-1.0, 1.0]
补充:Python: 记录一个关于图片直接转化为pytorch.tensor和numpy.array的不同之处的问题
img = Image.open(img_path).convert("RGB") img2 = torchvision.transforms.functional.to_tensor(img) print(img2) img1 = np.array(img) print(img1)
输出是这样的:
不仅shape不一样,而且值也是不一样的。
解释如下:
tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2, 0, 1).float() / 255 tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # 两种方法是一样的
PIL.Image.open()得到HWC格式,直接使用numpy 去转换得到(h,w,c)格式,而用to_tensor得到(c,h,w)格式且值已经除了255。
byte()相当于to(torch.uint8),tensor.numpy()是把tensor 转化为numpy.array格式。
在这里需要注意的是PIL和OPENCV的图像读取得到的格式都是HWC格式,一般模型训练使用的是CHW格式, H为Y轴是竖直方向,W为X轴水平方向。
且torchvision.transforms.functional.to_tensor()对所有输入都是有变换操作。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]