1. torch.utils.data.Dataset
datasets这是一个pytorch定义的dataset的源码集合。下面是一个自定义Datasets的基本框架,初始化放在__init__()中,其中__getitem__()和__len__()两个方法是必须重写的。
__getitem__()返回训练数据,如图片和label,而__len__()返回数据长度。
class CustomDataset(data.Dataset):#需要继承data.Dataset def __init__(self): # TODO # 1. Initialize file path or list of file names. pass def __getitem__(self, index): # TODO # 1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open). # 2. Preprocess the data (e.g. torchvision.Transform). # 3. Return a data pair (e.g. image and label). #这里需要注意的是,第一步:read one data,是一个data pass def __len__(self): # You should change 0 to the total size of your dataset. return 0
2. torch.utils.data.DataLoader
DataLoader(object)
可用参数:
dataset(Dataset)
传入的数据集
batch_size(int, optional)
每个batch有多少个样本
shuffle(bool, optional)
在每个epoch开始的时候,对数据进行重新排序
sampler(Sampler, optional)
自定义从数据集中取样本的策略,如果指定这个参数,那么shuffle必须为False
batch_sampler(Sampler, optional)
与sampler类似,但是一次只返回一个batch的indices(索引),需要注意的是,一旦指定了这个参数,那么batch_size,shuffle,sampler,drop_last就不能再制定了(互斥——Mutually exclusive)
num_workers (int, optional)
这个参数决定了有几个进程来处理data loading。0意味着所有的数据都会被load进主进程。(默认为0)
collate_fn (callable, optional)
将一个list的sample组成一个mini-batch的函数
pin_memory (bool, optional)
如果设置为True,那么data loader将会在返回它们之前,将tensors拷贝到CUDA中的固定内存(CUDA pinned memory)中.
drop_last (bool, optional)
如果设置为True:这个是对最后的未完成的batch来说的,比如你的batch_size设置为64,而一个epoch只有100个样本,那么训练的时候后面的36个就被扔掉了。 如果为False(默认),那么会继续正常执行,只是最后的batch_size会小一点。
timeout(numeric, optional)
如果是正数,表明等待从worker进程中收集一个batch等待的时间,若超出设定的时间还没有收集到,那就不收集这个内容了。这个numeric应总是大于等于0。默认为0
worker_init_fn (callable, optional)
每个worker初始化函数 If not None, this will be called on eachworker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and before data loading. (default: None)
3. 使用Dataset, DataLoader产生自定义训练数据
假设TXT文件保存了数据的图片和label,格式如下:第一列是图片的名字,第二列是label
0.jpg 0 1.jpg 1 2.jpg 2 3.jpg 3 4.jpg 4 5.jpg 5 6.jpg 6 7.jpg 7 8.jpg 8 9.jpg 9
也可以是多标签的数据,如:
0.jpg 0 10 1.jpg 1 11 2.jpg 2 12 3.jpg 3 13 4.jpg 4 14 5.jpg 5 15 6.jpg 6 16 7.jpg 7 17 8.jpg 8 18 9.jpg 9 19
图库十张原始图片放在./dataset/images目录下,然后我们就可以自定义一个Dataset解析这些数据并读取图片,再使用DataLoader类产生batch的训练数据
3.1 自定义Dataset
首先先自定义一个TorchDataset类,用于读取图片数据,产生标签:
注意初始化函数:
import torch from torch.autograd import Variable from torchvision import transforms from torch.utils.data import Dataset, DataLoader import numpy as np from utils import image_processing import os class TorchDataset(Dataset): def __init__(self, filename, image_dir, resize_height=256, resize_width=256, repeat=1): ''' :param filename: 数据文件TXT:格式:imge_name.jpg label1_id labe2_id :param image_dir: 图片路径:image_dir+imge_name.jpg构成图片的完整路径 :param resize_height 为None时,不进行缩放 :param resize_width 为None时,不进行缩放, PS:当参数resize_height或resize_width其中一个为None时,可实现等比例缩放 :param repeat: 所有样本数据重复次数,默认循环一次,当repeat为None时,表示无限循环<sys.maxsize ''' self.image_label_list = self.read_file(filename) self.image_dir = image_dir self.len = len(self.image_label_list) self.repeat = repeat self.resize_height = resize_height self.resize_width = resize_width # 相关预处理的初始化 '''class torchvision.transforms.ToTensor''' # 把shape=(H,W,C)的像素值范围为[0, 255]的PIL.Image或者numpy.ndarray数据 # 转换成shape=(C,H,W)的像素数据,并且被归一化到[0.0, 1.0]的torch.FloatTensor类型。 self.toTensor = transforms.ToTensor() '''class torchvision.transforms.Normalize(mean, std) 此转换类作用于torch. * Tensor,给定均值(R, G, B) 和标准差(R, G, B), 用公式channel = (channel - mean) / std进行规范化。 ''' # self.normalize=transforms.Normalize() def __getitem__(self, i): index = i % self.len # print("i={},index={}".format(i, index)) image_name, label = self.image_label_list[index] image_path = os.path.join(self.image_dir, image_name) img = self.load_data(image_path, self.resize_height, self.resize_width, normalization=False) img = self.data_preproccess(img) label=np.array(label) return img, label def __len__(self): if self.repeat == None: data_len = 10000000 else: data_len = len(self.image_label_list) * self.repeat return data_len def read_file(self, filename): image_label_list = [] with open(filename, 'r') as f: lines = f.readlines() for line in lines: # rstrip:用来去除结尾字符、空白符(包括\n、\r、\t、' ',即:换行、回车、制表符、空格) content = line.rstrip().split(' ') name = content[0] labels = [] for value in content[1:]: labels.append(int(value)) image_label_list.append((name, labels)) return image_label_list def load_data(self, path, resize_height, resize_width, normalization): ''' 加载数据 :param path: :param resize_height: :param resize_width: :param normalization: 是否归一化 :return: ''' image = image_processing.read_image(path, resize_height, resize_width, normalization) return image def data_preproccess(self, data): ''' 数据预处理 :param data: :return: ''' data = self.toTensor(data) return data
3.2 DataLoader产生批训练数据
if __name__=='__main__': train_filename="../dataset/train.txt" # test_filename="../dataset/test.txt" image_dir='../dataset/images' epoch_num=2 #总样本循环次数 batch_size=7 #训练时的一组数据的大小 train_data_nums=10 max_iterate=int((train_data_nums+batch_size-1)/batch_size*epoch_num) #总迭代次数 train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=1) # test_data = TorchDataset(filename=test_filename, image_dir=image_dir,repeat=1) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False) # test_loader = DataLoader(dataset=test_data, batch_size=batch_size,shuffle=False) # [1]使用epoch方法迭代,TorchDataset的参数repeat=1 for epoch in range(epoch_num): for batch_image, batch_label in train_loader: image=batch_image[0,:] image=image.numpy()#image=np.array(image) image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c] image_processing.cv_show_image("image",image) print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label)) # batch_x, batch_y = Variable(batch_x), Variable(batch_y)
上面的迭代代码是通过两个for实现,其中参数epoch_num表示总样本循环次数,比如epoch_num=2,那就是所有样本循环迭代2次。
但这会出现一个问题,当样本总数train_data_nums与batch_size不能整取时,最后一个batch会少于规定batch_size的大小,比如这里样本总数train_data_nums=10,batch_size=7,第一次迭代会产生7个样本,第二次迭代会因为样本不足,只能产生3个样本。
我们希望,每次迭代都会产生相同大小的batch数据,因此可以如下迭代:注意本人在构造TorchDataset类时,就已经考虑循环迭代的方法,因此,你现在只需修改repeat为None时,就表示无限循环了,调用方法如下:
''' 下面两种方式,TorchDataset设置repeat=None可以实现无限循环,退出循环由max_iterate设定 ''' train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=None) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False) # [2]第2种迭代方法 for step, (batch_image, batch_label) in enumerate(train_loader): image=batch_image[0,:] image=image.numpy()#image=np.array(image) image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c] image_processing.cv_show_image("image",image) print("step:{},batch_image.shape:{},batch_label:{}".format(step,batch_image.shape,batch_label)) # batch_x, batch_y = Variable(batch_x), Variable(batch_y) if step>=max_iterate: break # [3]第3种迭代方法 # for step in range(max_iterate): # batch_image, batch_label=train_loader.__iter__().__next__() # image=batch_image[0,:] # image=image.numpy()#image=np.array(image) # image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c] # image_processing.cv_show_image("image",image) # print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label)) # # batch_x, batch_y = Variable(batch_x), Variable(batch_y)
3.3 附件:image_processing.py
上面代码,用到image_processing,这是本人封装好的图像处理包,包含读取图片,画图等基本方法:
# -*-coding: utf-8 -*- """ @Project: IntelligentManufacture @File : image_processing.py @Author : panjq @E-mail : pan_jinquan@163.com @Date : 2019-02-14 15:34:50 """ import os import glob import cv2 import numpy as np import matplotlib.pyplot as plt def show_image(title, image): ''' 调用matplotlib显示RGB图片 :param title: 图像标题 :param image: 图像的数据 :return: ''' # plt.figure("show_image") # print(image.dtype) plt.imshow(image) plt.axis('on') # 关掉坐标轴为 off plt.title(title) # 图像题目 plt.show() def cv_show_image(title, image): ''' 调用OpenCV显示RGB图片 :param title: 图像标题 :param image: 输入RGB图像 :return: ''' channels=image.shape[-1] if channels==3: image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # 将BGR转为RGB cv2.imshow(title,image) cv2.waitKey(0) def read_image(filename, resize_height=None, resize_width=None, normalization=False): ''' 读取图片数据,默认返回的是uint8,[0,255] :param filename: :param resize_height: :param resize_width: :param normalization:是否归一化到[0.,1.0] :return: 返回的RGB图片数据 ''' bgr_image = cv2.imread(filename) # bgr_image = cv2.imread(filename,cv2.IMREAD_IGNORE_ORIENTATION|cv2.IMREAD_COLOR) if bgr_image is None: print("Warning:不存在:{}", filename) return None if len(bgr_image.shape) == 2: # 若是灰度图则转为三通道 print("Warning:gray image", filename) bgr_image = cv2.cvtColor(bgr_image, cv2.COLOR_GRAY2BGR) rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB) # 将BGR转为RGB # show_image(filename,rgb_image) # rgb_image=Image.open(filename) rgb_image = resize_image(rgb_image,resize_height,resize_width) rgb_image = np.asanyarray(rgb_image) if normalization: # 不能写成:rgb_image=rgb_image/255 rgb_image = rgb_image / 255.0 # show_image("src resize image",image) return rgb_image def fast_read_image_roi(filename, orig_rect, ImreadModes=cv2.IMREAD_COLOR, normalization=False): ''' 快速读取图片的方法 :param filename: 图片路径 :param orig_rect:原始图片的感兴趣区域rect :param ImreadModes: IMREAD_UNCHANGED IMREAD_GRAYSCALE IMREAD_COLOR IMREAD_ANYDEPTH IMREAD_ANYCOLOR IMREAD_LOAD_GDAL IMREAD_REDUCED_GRAYSCALE_2 IMREAD_REDUCED_COLOR_2 IMREAD_REDUCED_GRAYSCALE_4 IMREAD_REDUCED_COLOR_4 IMREAD_REDUCED_GRAYSCALE_8 IMREAD_REDUCED_COLOR_8 IMREAD_IGNORE_ORIENTATION :param normalization: 是否归一化 :return: 返回感兴趣区域ROI ''' # 当采用IMREAD_REDUCED模式时,对应rect也需要缩放 scale=1 if ImreadModes == cv2.IMREAD_REDUCED_COLOR_2 or ImreadModes == cv2.IMREAD_REDUCED_COLOR_2: scale=1/2 elif ImreadModes == cv2.IMREAD_REDUCED_GRAYSCALE_4 or ImreadModes == cv2.IMREAD_REDUCED_COLOR_4: scale=1/4 elif ImreadModes == cv2.IMREAD_REDUCED_GRAYSCALE_8 or ImreadModes == cv2.IMREAD_REDUCED_COLOR_8: scale=1/8 rect = np.array(orig_rect)*scale rect = rect.astype(int).tolist() bgr_image = cv2.imread(filename,flags=ImreadModes) if bgr_image is None: print("Warning:不存在:{}", filename) return None if len(bgr_image.shape) == 3: # rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB) # 将BGR转为RGB else: rgb_image=bgr_image #若是灰度图 rgb_image = np.asanyarray(rgb_image) if normalization: # 不能写成:rgb_image=rgb_image/255 rgb_image = rgb_image / 255.0 roi_image=get_rect_image(rgb_image , rect) # show_image_rect("src resize image",rgb_image,rect) # cv_show_image("reROI",roi_image) return roi_image def resize_image(image,resize_height, resize_width): ''' :param image: :param resize_height: :param resize_width: :return: ''' image_shape=np.shape(image) height=image_shape[0] width=image_shape[1] if (resize_height is None) and (resize_width is None):#错误写法:resize_height and resize_width is None return image if resize_height is None: resize_height=int(height*resize_width/width) elif resize_width is None: resize_width=int(width*resize_height/height) image = cv2.resize(image, dsize=(resize_width, resize_height)) return image def scale_image(image,scale): ''' :param image: :param scale: (scale_w,scale_h) :return: ''' image = cv2.resize(image,dsize=None, fx=scale[0],fy=scale[1]) return image def get_rect_image(image,rect): ''' :param image: :param rect: [x,y,w,h] :return: ''' x, y, w, h=rect cut_img = image[y:(y+ h),x:(x+w)] return cut_img def scale_rect(orig_rect,orig_shape,dest_shape): ''' 对图像进行缩放时,对应的rectangle也要进行缩放 :param orig_rect: 原始图像的rect=[x,y,w,h] :param orig_shape: 原始图像的维度shape=[h,w] :param dest_shape: 缩放后图像的维度shape=[h,w] :return: 经过缩放后的rectangle ''' new_x=int(orig_rect[0]*dest_shape[1]/orig_shape[1]) new_y=int(orig_rect[1]*dest_shape[0]/orig_shape[0]) new_w=int(orig_rect[2]*dest_shape[1]/orig_shape[1]) new_h=int(orig_rect[3]*dest_shape[0]/orig_shape[0]) dest_rect=[new_x,new_y,new_w,new_h] return dest_rect def show_image_rect(win_name,image,rect): ''' :param win_name: :param image: :param rect: :return: ''' x, y, w, h=rect point1=(x,y) point2=(x+w,y+h) cv2.rectangle(image, point1, point2, (0, 0, 255), thickness=2) cv_show_image(win_name, image) def rgb_to_gray(image): image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) return image def save_image(image_path, rgb_image,toUINT8=True): if toUINT8: rgb_image = np.asanyarray(rgb_image * 255, dtype=np.uint8) if len(rgb_image.shape) == 2: # 若是灰度图则转为三通道 bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_GRAY2BGR) else: bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR) cv2.imwrite(image_path, bgr_image) def combime_save_image(orig_image, dest_image, out_dir,name,prefix): ''' 命名标准:out_dir/name_prefix.jpg :param orig_image: :param dest_image: :param image_path: :param out_dir: :param prefix: :return: ''' dest_path = os.path.join(out_dir, name + "_"+prefix+".jpg") save_image(dest_path, dest_image) dest_image = np.hstack((orig_image, dest_image)) save_image(os.path.join(out_dir, "{}_src_{}.jpg".format(name,prefix)), dest_image)
3.4 完整的代码
# -*-coding: utf-8 -*- """ @Project: pytorch-learning-tutorials @File : dataset.py @Author : panjq @E-mail : pan_jinquan@163.com @Date : 2019-03-07 18:45:06 """ import torch from torch.autograd import Variable from torchvision import transforms from torch.utils.data import Dataset, DataLoader import numpy as np from utils import image_processing import os class TorchDataset(Dataset): def __init__(self, filename, image_dir, resize_height=256, resize_width=256, repeat=1): ''' :param filename: 数据文件TXT:格式:imge_name.jpg label1_id labe2_id :param image_dir: 图片路径:image_dir+imge_name.jpg构成图片的完整路径 :param resize_height 为None时,不进行缩放 :param resize_width 为None时,不进行缩放, PS:当参数resize_height或resize_width其中一个为None时,可实现等比例缩放 :param repeat: 所有样本数据重复次数,默认循环一次,当repeat为None时,表示无限循环<sys.maxsize ''' self.image_label_list = self.read_file(filename) self.image_dir = image_dir self.len = len(self.image_label_list) self.repeat = repeat self.resize_height = resize_height self.resize_width = resize_width # 相关预处理的初始化 '''class torchvision.transforms.ToTensor''' # 把shape=(H,W,C)的像素值范围为[0, 255]的PIL.Image或者numpy.ndarray数据 # 转换成shape=(C,H,W)的像素数据,并且被归一化到[0.0, 1.0]的torch.FloatTensor类型。 self.toTensor = transforms.ToTensor() '''class torchvision.transforms.Normalize(mean, std) 此转换类作用于torch. * Tensor,给定均值(R, G, B) 和标准差(R, G, B), 用公式channel = (channel - mean) / std进行规范化。 ''' # self.normalize=transforms.Normalize() def __getitem__(self, i): index = i % self.len # print("i={},index={}".format(i, index)) image_name, label = self.image_label_list[index] image_path = os.path.join(self.image_dir, image_name) img = self.load_data(image_path, self.resize_height, self.resize_width, normalization=False) img = self.data_preproccess(img) label=np.array(label) return img, label def __len__(self): if self.repeat == None: data_len = 10000000 else: data_len = len(self.image_label_list) * self.repeat return data_len def read_file(self, filename): image_label_list = [] with open(filename, 'r') as f: lines = f.readlines() for line in lines: # rstrip:用来去除结尾字符、空白符(包括\n、\r、\t、' ',即:换行、回车、制表符、空格) content = line.rstrip().split(' ') name = content[0] labels = [] for value in content[1:]: labels.append(int(value)) image_label_list.append((name, labels)) return image_label_list def load_data(self, path, resize_height, resize_width, normalization): ''' 加载数据 :param path: :param resize_height: :param resize_width: :param normalization: 是否归一化 :return: ''' image = image_processing.read_image(path, resize_height, resize_width, normalization) return image def data_preproccess(self, data): ''' 数据预处理 :param data: :return: ''' data = self.toTensor(data) return data if __name__=='__main__': train_filename="../dataset/train.txt" # test_filename="../dataset/test.txt" image_dir='../dataset/images' epoch_num=2 #总样本循环次数 batch_size=7 #训练时的一组数据的大小 train_data_nums=10 max_iterate=int((train_data_nums+batch_size-1)/batch_size*epoch_num) #总迭代次数 train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=1) # test_data = TorchDataset(filename=test_filename, image_dir=image_dir,repeat=1) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False) # test_loader = DataLoader(dataset=test_data, batch_size=batch_size,shuffle=False) # [1]使用epoch方法迭代,TorchDataset的参数repeat=1 for epoch in range(epoch_num): for batch_image, batch_label in train_loader: image=batch_image[0,:] image=image.numpy()#image=np.array(image) image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c] image_processing.cv_show_image("image",image) print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label)) # batch_x, batch_y = Variable(batch_x), Variable(batch_y) ''' 下面两种方式,TorchDataset设置repeat=None可以实现无限循环,退出循环由max_iterate设定 ''' train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=None) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False) # [2]第2种迭代方法 for step, (batch_image, batch_label) in enumerate(train_loader): image=batch_image[0,:] image=image.numpy()#image=np.array(image) image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c] image_processing.cv_show_image("image",image) print("step:{},batch_image.shape:{},batch_label:{}".format(step,batch_image.shape,batch_label)) # batch_x, batch_y = Variable(batch_x), Variable(batch_y) if step>=max_iterate: break # [3]第3种迭代方法 # for step in range(max_iterate): # batch_image, batch_label=train_loader.__iter__().__next__() # image=batch_image[0,:] # image=image.numpy()#image=np.array(image) # image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c] # image_processing.cv_show_image("image",image) # print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label)) # # batch_x, batch_y = Variable(batch_x), Variable(batch_y)
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]