以下排序算法最终结果都默认为升序排列,实现简单,没有考虑特殊情况,实现仅表达了算法的基本思想。

冒泡排序

内层循环中相邻的元素被依次比较,内层循环第一次结束后会将最大的元素移到序列最右边,第二次结束后会将次大的元素移到最大元素的左边,每次内层循环结束都会将一个元素排好序。

def bubble_sort(arr):
  length = len(arr)
  for i in range(length):
    for j in range(length - i - 1):
      if arr[j] > arr[j + 1]:
        arr[j], arr[j + 1] = arr[j + 1], arr[j]
  return arr

选择排序

每次内层循环都会得到一个当前最小的元素,并将其放到合适的位置。内层循环第一次结束后会将最小的元素交换到序列首位,第二次结束后会将第二小的元素交换到序列第二位,每次内层循环结束后都会将一个元素放在正确的顺序位置。

def selection_sort(arr):
  length = len(arr)
  for i in range(length):
    min_index = i
    for j in range(i + 1, length):
      if arr[j] < arr[min_index]:
        min_index = j
    arr[i], arr[min_index] = arr[min_index], arr[i]
  return arr

插入排序

类比玩扑克牌时理牌的思想,从第一个元素开始,假设它是已经排好序的。然后开始处理第二个元素,如果比第一个元素小,则将其放到第一个元素左边,否则放在其右边,那么现在前两个元素以及排好序了,之后再依次处理剩余的元素。

def insertion_sort(arr):
  length = len(arr)
  for i in range(1, length):
    pre = i - 1
    current_value = arr[i]
    while pre >= 0 and arr[pre] > current_value:
      arr[pre + 1] = arr[pre]
      pre -= 1
    arr[pre+1] = current_value
  return arr

希尔排序

希尔排序就是将插入排序的改进版本。插入排序中每次逐步比较元素,而希尔排序中则是从一个较大的步数开始比较,最后减小到一步。

def shell_sort(arr):
  length = len(arr)
  gap = length // 2
  while gap > 0:
    for i in range(gap, length):
      pre = i - gap
      current_value = arr[i]
      while pre >= 0 and arr[pre] > current_value:
        arr[pre + gap] = arr[pre]
        pre -= gap
      arr[pre + gap] = current_value
    gap = gap // 2
  return arr

归并排序

先将序列前半部分排好序,再将序列后半部分排好序,之后再将这两部分合并得到最终的序列,具体实现为递归地将序列分为两部分,分别排序后再合并。

def merge(left, right):
  result = []
  while len(left) > 0 and len(right) > 0:
    if left[0] < right[0]:
      result.append(left.pop(0))
    else:
      result.append(right.pop(0))
  if len(left) > 0:
    result.extend(left[:])
  if len(right) > 0:
    result.extend(right[:])
  return result


def merge_sort(arr):
  if len(arr) < 2:
    return arr
  middle = len(arr) // 2
  return merge(merge_sort(arr[:middle]), merge_sort(arr[middle:]))

快速排序

取一个元素,将比它小的元素都移到它左侧,将比它大的元素都移到它右侧,并递归地处理它左侧的序列和右侧的序列。

def partition(arr, left=None, right=None):
  pivot = left
  index = pivot + 1
  for i in range(index, right + 1):
    if arr[i] < arr[pivot]:
      arr[i], arr[index] = arr[index], arr[i]
      index += 1
  arr[pivot], arr[index - 1] = arr[index - 1], arr[pivot]
  return index - 1


def quick_sort(arr, left=None, right=None):
  left = 0 if left is None else left
  right = len(arr) - 1 if right is None else right
  if left < right:
    partition_index = partition(arr, left, right)
    quick_sort(arr, left, partition_index - 1)
    quick_sort(arr, partition_index + 1, right)
  return arr

堆排序

首先构建一个最大堆,最大堆的性质是父节点的值总是大于其左右子节点的值,那么此时根节点的值是最大的,则将其移到序列的最右边。之后将堆中当前最后一个叶节点移到根节点上,因为这可能会不符合最大堆的性质,所以会进行调整,将它与其左右子节点中最大的值进行交换,则相当于将叶节点向下移动,交换过后如果还是不符合性质,则继续进行交换,直到符合性质后,此时的根节点的值就是当前堆中的最大值,将其取出放入序列中正确的位置后继续上述流程处理剩下的节点。

global length2


def heapify(arr, i):
  left = 2 * i + 1
  right = 2 * i + 2
  largest = i
  if left < length2 and arr[left] > arr[largest]:
    largest = left
  if right < length2 and arr[right] > arr[largest]:
    largest = right
  if largest != i:
    arr[i], arr[largest] = arr[largest], arr[i]
    heapify(arr, largest)


def build_max_heap(arr):
  for i in range(len(arr) // 2, -1, -1):
    heapify(arr, i)


def heap_sort(arr):
  global length2
  length2 = len(arr)
  build_max_heap(arr)
  for i in range(len(arr) - 1, 0, -1):
    arr[0], arr[i] = arr[i], arr[0]
    length2 -= 1
    heapify(arr, 0)
  return arr

计数排序

将序列中的元素按照其值放入相应的桶中,之后再按照桶的顺序取出即可,计数排序不需要比较操作。

def counting_sort(arr):
  max_value = max(arr)
  buckets = [0] * (max_value + 1)
  index = 0
  length = len(arr)
  for i in range(length):
    buckets[arr[i]] += 1
  for j in range(max_value + 1):
    while buckets[j] > 0:
      arr[index] = j
      index += 1
      buckets[j] -= 1
  return arr

桶排序

类别计数排序,构造很多桶,但每个桶中能放入值在特定范围内的元素,将序列中的元素按照要求放入各个桶中,再将每个桶中的元素进行排序,最后按照桶的顺序和各个桶中元素的顺序得到最终序列。

def bucket_sort(arr):
  bucket_size = 5
  max_value = max(arr)
  min_value = min(arr)
  bucket_num = (max_value - min_value) // bucket_size + 1
  buckets = {i: [] for i in range(bucket_num)}
  for i in range(len(arr)):
    buckets[(arr[i] - min_value) // bucket_size].append(arr[i])
  result = []
  for i in range(bucket_num):
    insertion_sort(buckets[i])
    result.extend(buckets[i])
  return result

基数排序

按照元素值的特定位进行排序,从低位到高位分别进行排序。

def radix_sort(arr):
  max_value = max(arr)
  max_digit = len(str(max_value))
  dev = 1
  mod = 10
  result = arr[:]
  for i in range(max_digit):
    buckets = {i: [] for i in range(mod)}
    for k in range(len(result)):
      key = (result[k] % mod) // dev
      buckets[key].append(result[k])
    result = []
    for j in range(mod):
      result.extend(buckets[j])
    dev *= 10
    mod *= 10
  return result

上述代码放在 这里

参考

  • https://www.cnblogs.com/onepixel/p/7674659.html
  • 算法导论
  • 菜鸟教程
标签:
python,经典排序算法,python,排序算法

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
无争山庄资源网 Copyright www.whwtcm.com

评论“python实现经典排序算法的示例代码”

暂无“python实现经典排序算法的示例代码”评论...

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。