一、matplotlib库

1、基本绘图命令

import matplotlib.pyplot as plt
plt.figure(figsize=(5,4)) #设置图形大小
plt.rcParams['axes.unicode_minus']=False #正常显示负号
plt.rcParams['font.sans-self']=['Kai Ti'] #设置字体,这里是楷体,SimHei表示黑体

#基本统计图
plt.bar(x,y);plt.pie(y,labels=x);plt.plot(x,y);
plt.hist(df.身高) #若参数density=True则是频率直方图

3、图形参数设置

颜色: plt.plot(x,y,c=‘red') #参数c控制颜色
横纵坐标轴范围: plt.xlim(0,100),plt.ylim(0,8)
横纵坐标轴名称: plt.xlabel(),plt.ylabel()
横纵坐标轴刻度: plt.xticks(range(len(x)),x)
线形和符号: plt.plot(x,y,linestyle='–',marker=‘o') #实线:'-' ;虚线:'–'; '.'指点线
附加参考线: plt.axvline(x=1);plt.axhline(y=4)
文字标注: plt.text(3,5,‘peak point') #参数表示:坐标+文字
图例: plt.plot(x,y,label=‘折线');plt.legend()
分面绘图:

#一行两图
plt.subplot(121)
plt.bar(x,y)
plt.subplot(122)
plt.plot(x,y)
#一页多图
fig,ax=plt.subplots(2,2,figsize=(15,12)) # 2行2列放4个图,figsize控制大小
ax[0,0].bar(x,y);ax[0,1].plot(x,y);
ax[1,0].pie(x,y);ax[1,1].plot(y,'.',linewidth=3)

具体的参数color、linestyle、图例位置设置

颜色字符(color)

字符 代表颜色 r 红色 b 蓝色 g 绿色 w 白色 c 青色 m 洋红 y 黄色 k 黑色

风格字符(linestyle)

字符 代表风格 - (一个连字符) 实线 – (两个连字符) 虚线 -. 点划线 : 点虚线 ' ' 留空,空格

loc 参数(以matplotlib添加图例为例说明位置)

loc string loc code 位置 "best" 0 右上角(默认) “upper right” 1 右上角 “upper left” 2 左上角 “lower left” 3 左下角 “lower right” 4 右下角 "right" 5 中右侧 “center left” 6 中左侧 “center right” 7 中右侧 “low center” 8 中下方 “upper center” 9 中上方 “center” 10 中间

4、特殊统计图的绘制

4.1 数学函数图

import matplotlib.pyplot as plt   #加载基本绘图包
plt.rcParams['font.sans-serif']=['SimHei']; #SimHei黑体
plt.rcParams['axes.unicode_minus']=False; #正常显示图中负号
import numpy as np #加载软件包numpy
import math  #加载软件包math
x=np.linspace(0,2*math.pi);x #生成[0,2*pi]序列 ,作为横坐标取值
plt.plot(x,np.sin(x)) #y=sinx 正弦函数
plt.plot(x,np.cos(x)) #y=cosx 余弦函数
plt.plot(x,np.log(x)) #y=lnx #对数函数
plt.plot(x,np.exp(x)) #y=e^x 指数函数

数学函数也可以用pandas库绘制,可详见我的另一篇博客:文章链接

#极坐标图
t=np.linspace(0,2*math.pi) 
x=3*np.sin(t); 
y=5*np.cos(t) 
plt.plot(x,y); 
plt.text(0,0,r'$\frac{x^2}{3^2}+\frac{y^2}{5^2}=1$',fontsize=20) #python借鉴的LATEX的格式,可以直接在图中添加公式

python可视化分析的实现(matplotlib、seaborn、ggplot2)

4.2 气泡图

import pandas as pd
df=pd.read_excel('data.xlsx')
plt.scatter(df['身高'], df['体重'], s=df['支出']) #在散点图的基础上加上点的大小,例子中s=df['支出']就是将指各样本点支出越多,点面积就越大

python可视化分析的实现(matplotlib、seaborn、ggplot2)

4.3 三维曲面图

from mpl_toolkits.mplot3d import Axes3D 
fig = plt.figure() 
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.5) 
Y = np.arange(-4, 4, 0.5) 
X, Y = np.meshgrid(X, Y)
Z = (X**2+ Y**2)
ax.plot_surface(X, Y, Z) #该图像就是表示函数z=x^2+y^2

python可视化分析的实现(matplotlib、seaborn、ggplot2)

二、seaborn库

1、常用统计图

1.1 箱线图

import seaborn as sns #加载软件包seaborn
#箱线图
sns.boxplot(x=df['身高'])
#竖着放的箱线图,也就是将 x 换成 y
sns.boxplot(y=df['身高']) 
#分组绘制箱线图
sns.boxplot(x='性别', y='身高',data=df) #将身高按性别分组后绘制

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.2 小提琴图

sns.violinplot(x='性别', y='支出', data=df) #箱线图的变种,可以加第三个类别参数hue

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.3 点图

sns.stripplot(x='性别', y='身高', data=df, jitter=True) #分组的数据(定性+定量)画的点图,jitter参数为True表示将点分散开来,默认为false

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.4 条图与计数图

#条图,即柱形图
sns.barplot(x='性别', y='身高', data=df, ci=0, palette="Blues_d") #palette用于设置颜色
#计数图
sns.countplot(x='性别', hue="开设", data=df) #都是分类变量

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.5 分组图

#按性别、开设依次分组后计数,aspect指比例大小
sns.factorplot(x='性别', col="开设", col_wrap=3, data=df, kind="count", size=2.5, aspect=.8) 

python可视化分析的实现(matplotlib、seaborn、ggplot2)

1.6 概率分布图

#displot:直方图+密度函数,bins表示分的组数,kde=False表示不画出密度曲线,rug表示有数据的地方就标注出来
sns.distplot(df['身高'], kde=True, bins=20, rug=True)

#自定义渐进正态函数图像
def norm_sim2(N=1000,n=10):
 xbar=np.zeros(N)
 for i in range(N):
  xbar[i]=np.random.uniform(0,1,n).mean()#[0,1]上均匀随机数均值
 sns.distplot(xbar,bins=50)
 print(pd.DataFrame(xbar).describe().T)
norm_sim2(N=100000,n=50) 

python可视化分析的实现(matplotlib、seaborn、ggplot2)

2、联合图

sns.jointplot(x='身高', y='体重', data=df)#画的散点图+单个变量的直方图

python可视化分析的实现(matplotlib、seaborn、ggplot2)

3、配对图

#针对多个变量,两两配对,画在一起
sns.pairplot(df[['身高','体重','支出']]) #将各变量间关系共放一张图上,在多元统计分析中很有用

python可视化分析的实现(matplotlib、seaborn、ggplot2)

三、ggplot库

ggplot库是采用的绘画中图层的思想,即一层一层往上叠加,先画好坐标,再添线,再增加其他操作,最后用 + 号连接起来,操作起来更有逻辑章法,语句简洁。ggplot新包是plotnine,与R语言的ggplot2对应,使用起来更方便,故直接import plotnine即可,里面的函数使用与ggplot是基本一样的

1、图层画法+常用图形

绘制直角坐标系和字体

GP=ggplot(aes(x='身高',y='体重'),data=df)

python可视化分析的实现(matplotlib、seaborn、ggplot2)

在此基础上增加线图

GP + geom_line()+ theme_grey(base_family = 'SimHei')#还可以再往上叠加,+geom_point()就是在折线图基础上加上散点图

python可视化分析的实现(matplotlib、seaborn、ggplot2)

改为有三个变量的点图,不同类型画不同记号(shape)/颜色(color)

ggplot(df,aes(x='身高',y='体重',color='性别'))+geom_point()+ theme_grey(base_family = 'SimHei')

python可视化分析的实现(matplotlib、seaborn、ggplot2)

改为分面图:
用pandas绘制分组统计图还需要先groupby,ggplot一步到位更加简便

ggplot(df,aes(x='身高',y='体重'))+geom_point()+facet_wrap('性别') + 
theme_grey(base_family = 'SimHei') #facet_wrap('性别')表示按性别分成两组画分面图

python可视化分析的实现(matplotlib、seaborn、ggplot2)

此外,+theme_bw()等可以设置图片背景、主题

2、快速绘图

ggplot也可以像pandas一样,在qplot函数中设置参数geom的取值而直接改变图像类型

#快速绘制直方图
qplot(x='身高',data=df, geom='histogram')+ theme_grey(base_family = 'SimHei')
#快速绘制柱形图
qplot('开设',data=df, geom='bar')+ theme_grey(base_family = 'SimHei')
#默认散点图
qplot('身高', '体重', data=df, color='性别') + theme_grey(base_family = 'SimHei')

以上是基于《python数据分析基础教程 王斌会》整理的学习笔记,还有许多参数设置没有写明,以及pyecharts 动态图神器,日后学习了再一点点补充吧~

标签:
python,可视化

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
无争山庄资源网 Copyright www.whwtcm.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。