Intersection over Union(IOU)是一种测量在特定数据集中检测相应物体准确度的一个标准。IoU是一个简单的测量标准,只要是在输出中得出一个预测范围(bounding boxes)的任务都可以用IoU来进行测量。
IoU分数是对象类别分割问题的标准性能度量 [1] 。 给定一组图像,IoU测量给出了在该组图像中存在的对象的预测区域和地面实况区域之间的相似性
计算两个矩形的交并比,通常在检测任务里面可以作为一个检测指标。你的预测bbox和groundtruth之间的差异,就可以通过IOU来体现。
代码如下
#!/usr/bin/env python # encoding: utf-8 import numpy as np ''' 函数说明:计算两个框的重叠面积 输入: rec1 第一个框xmin ymin xmax ymax rec2 第二个框xmin ymin xmax ymax 输出: iouv 重叠比例 0 没有 ''' def compute_iou(rec1, rec2): # computing area of each rectangles S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1]) # H1*W1 S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1]) # H2*W2 # computing the sum_area sum_area = S_rec1 + S_rec2 #总面积 # find the each edge of intersect rectangle left_line = max(rec1[0], rec2[0]) right_line = min(rec1[2], rec2[2]) top_line = max(rec1[1], rec2[1]) bottom_line = min(rec1[3], rec2[3]) # judge if there is an intersect if left_line >= right_line or top_line >= bottom_line: #print("没有重合区域") return 0 else: #print("有重合区域") intersect = (right_line - left_line) * (bottom_line - top_line) iouv=(float(intersect) / float(sum_area - intersect))*1.0 return iouv ''' 函数说明:获取两组匹配结果 输入: rectA 车位 rectB 车辆 threod 重叠面积最小数值界限 默认0.6 输出: CarUse 一维数组保存是否占用 1 占用 0 没有 ''' def TestCarUse(rectA,rectB,threod=0.6,debug=0): #threod=0.8#设定最小值 ALength=len(rectA) BLength=len(rectB) #创建保存匹配结果的矩阵 recIOU=np.zeros((ALength,BLength),dtype=float,order='C') #用于记录车位能够使否占用 CarUse=np.zeros((1,ALength),dtype=int,order='C') for i in range(0,ALength): for j in range(0,BLength): iou = compute_iou(rectA[i], rectB[j]) recIOU[i][j]=format(iou,'.3f') if iou>=threod: CarUse[0,i]=1 #有一个超过匹配认为车位i被占用 if debug==1: print('----匹配矩阵----') print(recIOU) ''' print('----车位占用情况----') for i in range(0,ALength): msg='车位'+str(i)+"-"+str(CarUse[0][i]) print(msg) ''' return CarUse if __name__=='__main__': #A代表车位 rectA1 = (30, 10, 70, 20) rectA2 = (70, 10, 80, 20) rectA =[rectA1,rectA2] #B代表检测车辆 rectB1 = (20, 10, 35, 20) rectB2 = (30, 15, 70, 25) rectB3 = (70, 10, 80, 20) rectB =[rectB1,rectB2,rectB3] #获取车位占用情况 rectA车位 rectB车辆 0.6占面积最小比 CarUse=TestCarUse(rectA,rectB,0.6,1) print('----车位占用情况----') for i in range(0,len(CarUse)+1): msg='车位'+str(i)+"-"+str(CarUse[0][i]) print(msg)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
标签:
python,IOU计算
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件!
如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
无争山庄资源网 Copyright www.whwtcm.com
暂无“如何通过python实现IOU计算代码实例”评论...
更新日志
2024年11月15日
2024年11月15日
- 廖也欧《面朝大海》[Hi-Res][24bit 48kHz][FLAC/分轨][170.14MB]
- s13T1夺冠五人名单都有谁 s13T1夺冠五人名单一览
- 英雄联盟T1战队队长都有谁 T1战队所有队长介绍
- skt历届战队成员都有哪些 skt历届战队成员名单盘点
- 妙音唱片《大热唱片3》[WAV+CUE]
- 费玉清《跟着地球旋转》滚石时代经典复刻[正版原抓WAV+CUE]
- 罗文甄妮-射雕英雄传(AMCD)(限量版)[WAV+CUE]
- 《巫师4》定档2025再添佐证:参演人员曝光 老将回归
- 辣眼睛 美女COS《黑神话:悟空》比基尼版金池长老
- 外媒称PS5pro违背承诺:《蜘蛛侠2》根本没法4K60帧
- 令晴 Lynn《The Make》[320K/MP3][44.47MB]
- 令晴 Lynn《The Make》[Hi-Res][24bit 48kHz][FLAC/分轨][295.42MB]
- 雷婷《移情别恋HQⅡ》头版限量编号[低速原抓WAV+CUE][1G]
- FUNDAMENTAL.1989-感觉号渡轮【SONY】【WAV+CUE】
- 上山安娜.1986-上山安娜【EMI百代】【WAV+CUE】