在使用缓存时,容易发生缓存击穿。
缓存击穿:一个存在的key,在缓存过期的瞬间,同时有大量的请求过来,造成所有请求都去读dB,这些请求都会击穿到DB,造成瞬时DB请求量大、压力骤增。
singleflight
介绍
import "golang.org/x/sync/singleflight"
singleflight类的使用方法就新建一个singleflight.Group,使用其方法Do或者DoChan来包装方法,被包装的方法在对于同一个key,只会有一个协程执行,其他协程等待那个协程执行结束后,拿到同样的结果。
Group结构体
代表一类工作,同一个group中,同样的key同时只能被执行一次。
Do方法
func (g *Group) Do(key string, fn func() (interface{}, error)) (v interface{}, err error, shared bool)
key:同一个key,同时只有一个协程执行。
fn:被包装的函数。
v:返回值,即执行的结果。其他等待的协程都会拿到。
shared:表示是否有其他协程得到了这个结果v。
DoChan方法
func (g *Group) DoChan(key string, fn func() (interface{}, error)) <-chan Result
与Do方法一样,只是返回的是一个channel,执行结果会发送到channel中,其他等待的协程都可以从channel中拿到结果。
ref:https://godoc.org/golang.org/x/sync/singleflight
示例
使用Do方法来模拟,解决缓存击穿的问题
func main() { var singleSetCache singleflight.Group getAndSetCache:=func (requestID int,cacheKey string) (string, error) { log.Printf("request %v start to get and set cache...",requestID) value,_, _ :=singleSetCache.Do(cacheKey, func() (ret interface{}, err error) {//do的入参key,可以直接使用缓存的key,这样同一个缓存,只有一个协程会去读DB log.Printf("request %v is setting cache...",requestID) time.Sleep(3*time._Second_) log.Printf("request %v set cache success!",requestID) return "VALUE",nil }) return value.(string),nil } cacheKey:="cacheKey" for i:=1;i<10;i++{//模拟多个协程同时请求 go func(requestID int) { value,_:=getAndSetCache(requestID,cacheKey) log.Printf("request %v get value: %v",requestID,value) }(i) } time.Sleep(20*time._Second_) }
输出:
2020/04/12 18:18:40 request 4 start to get and set cache...
2020/04/12 18:18:40 request 4 is setting cache...
2020/04/12 18:18:40 request 2 start to get and set cache...
2020/04/12 18:18:40 request 7 start to get and set cache...
2020/04/12 18:18:40 request 5 start to get and set cache...
2020/04/12 18:18:40 request 1 start to get and set cache...
2020/04/12 18:18:40 request 6 start to get and set cache...
2020/04/12 18:18:40 request 3 start to get and set cache...
2020/04/12 18:18:40 request 8 start to get and set cache...
2020/04/12 18:18:40 request 9 start to get and set cache...
2020/04/12 18:18:43 request 4 set cache success!
2020/04/12 18:18:43 request 4 get value: VALUE
2020/04/12 18:18:43 request 9 get value: VALUE
2020/04/12 18:18:43 request 6 get value: VALUE
2020/04/12 18:18:43 request 3 get value: VALUE
2020/04/12 18:18:43 request 8 get value: VALUE
2020/04/12 18:18:43 request 1 get value: VALUE
2020/04/12 18:18:43 request 5 get value: VALUE
2020/04/12 18:18:43 request 2 get value: VALUE
2020/04/12 18:18:43 request 7 get value: VALUE`
可以看到确实只有一个协程执行了被包装的函数,并且其他协程都拿到了结果。
源码分析
看一下这个Do方法是怎么实现的。
首先看一下Group的结构:
type Group struct { mu sync.Mutex m map[string]*call //保存key对应的函数执行过程和结果的变量。 }
Group的结构非常简单,一个锁来保证并发安全,另一个map用来保存key对应的函数执行过程和结果的变量。
看下call的结构:
type call struct { wg sync.WaitGroup //用WaitGroup实现只有一个协程执行函数 val interface{} //函数执行结果 err error forgotten bool dups int //含义是duplications,即同时执行同一个key的协程数量 chans []chan<- Result }
看下Do方法
func (g *Group) Do(key string, fn func() (interface{}, error)) (v interface{}, err error, shared bool) { g.mu.Lock()//写Group的m字段时,加锁保证写安全。 if g.m == nil { g.m = make(map[string]*call) } if c, ok := g.m[key]; ok {//如果key已经存在,说明已经有协程在执行,则dups++,并等待其执行完毕后,返回其执行结果,执行结果保存在对应的call的val字段里 c.dups++ g.mu.Unlock() c.wg.Wait() return c.val, c.err, true } //如果key不存在,则新建一个call,并使用WaitGroup来阻塞其他协程,同时在m字段里写入key和对应的call c := new(call) c.wg.Add(1) g.m[key] = c g.mu.Unlock() g.doCall(c, key, fn)//第一个进来的协程来执行这个函数 return c.val, c.err, c.dups > 0 }
继续看下g.doCall里具体干了什么
func (g *Group) doCall(c *call, key string, fn func() (interface{}, error)) { c.val, c.err = fn()//执行被包装的函数 c.wg.Done()//执行完毕后,就可以通知其他协程可以拿结果了 g.mu.Lock() if !c.forgotten {//其实这里是为了保证执行完毕之后,对应的key被删除,Group有一个方法Forget(key string),可以用来主动删除key,这里是判断那个方法是否被调用过,被调用过则字段forgotten会置为true,如果没有被调用过,则在这里把key删除。 delete(g.m, key) } for _, ch := range c.chans {//将执行结果发送到channel里,这里是给DoChan方法使用的 ch <- Result{c.val, c.err, c.dups > 0} } g.mu.Unlock() }
由此看来,其实现是非常简单的。不得不赞叹一百来行代码就实现了功能。
其他
顺便附上DoChan方法的使用示例:
func main() { var singleSetCache singleflight.Group getAndSetCache:=func (requestID int,cacheKey string) (string, error) { log.Printf("request %v start to get and set cache...",requestID) retChan:=singleSetCache.DoChan(cacheKey, func() (ret interface{}, err error) { log.Printf("request %v is setting cache...",requestID) time.Sleep(3*time._Second_) log.Printf("request %v set cache success!",requestID) return "VALUE",nil }) var ret singleflight.Result timeout := time.After(5 * time._Second_) select {//加入了超时机制 case <-timeout: log.Printf("time out!") return "",errors.New("time out") case ret =<- retChan://从chan中取出结果 return ret.Val.(string),ret.Err } return "",nil } cacheKey:="cacheKey" for i:=1;i<10;i++{ go func(requestID int) { value,_:=getAndSetCache(requestID,cacheKey) log.Printf("request %v get value: %v",requestID,value) }(i) } time.Sleep(20*time._Second_) }
看下DoChan的源码
func (g *Group) DoChan(key string, fn func() (interface{}, error)) <-chan Result { ch := make(chan Result, 1) g.mu.Lock() if g.m == nil { g.m = make(map[string]*call) } if c, ok := g.m[key]; ok { c.dups++ c.chans = append(c.chans, ch)//可以看到,每个等待的协程,都有一个结果channel。从之前的g.doCall里也可以看到,每个channel都给塞了结果。为什么不所有协程共用一个channel?因为那样就得在channel里塞至少与协程数量一样的结果数量,但是你却无法保证用户一个协程只读取一次。 g.mu.Unlock() return ch } c := &call{chans: []chan<- Result{ch}} c.wg.Add(1) g.m[key] = c g.mu.Unlock() go g.doCall(c, key, fn) return ch }
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]